机器人力控制综述

2026-01-09 11:12:45

[1] Hongan N.Impedance control:an approach to manipulation:part Ⅱ—implementation [J].Journal of Dynamic Systems,Measurement,and Control,1985,107:8-16

[2] Raibert M H,Craig J J.Hybrid position/force control of manipulators[J].Journal of Dynamic Systems,Measurement,and Control,1981,103(2):126-133

[3] Beretta E,Nessi F,Ferrigno G,et al.Enhanced torque-based impedance control to assist brain targeting during open-skull neurosurgery:a feasibility study[J].The International Journal of Medical Robotics and Computer Assisted Surgery,2016,12(3):326-341

[4] 潘冬,李大明,胡成威,等.一种基于位置阻抗的机械臂抓捕飞行器控制方法[J].载人航天,2018,24(3):308-312;PAN Dong,LI Daming,HU Chengwei,et al.A spacecraft capture method with manipulator based on impedance control[J].Manned Spaceflight,2018,24(3):308-312

[5] Kitazawa T,Kurisu M,Takemasa S.Impedance control of a mobile robot with dual arms for a tumbling operation[C]//2017 11th Asian Control Conference(ASCC).December 17-20,2017,Gold Coast,QLD.IEEE,2017:25-30

[6] Zhu Q D,Xie X R,Li C,et al.Adaptive impedance control method for industrial manipulator writing based on Kalman filter[C]//2018 37th Chinese Control Conference(CCC).July 25-27,2018,Wuhan.IEEE,2018:496-501

[7] 姜力,蔡鹤皋,刘宏.基于滑模位置控制的机器人灵巧手模糊自适应阻抗控制[J].控制与决策,2001,16(5):612-616;JIANG Li,CAI Hegao,LIU Hong.Fuzzy adaptive impedance control of dextrous robot hand based on sliding mode position control[J].Control and Decision,2001,16(5):612-616

[8] 吴攀峰.六自由度工业机器人的NURBS曲线插补算法的研究 [D].杭州:浙江工业大学,2013;WU Panfeng.The research on NURBS curve interpolation algorithm of six-DOF industrial robot [D].Hangzhou:Zhejiang University of Technology,2013

[9] Mendes N,Neto P.Indirect adaptive fuzzy control for industrial robots:a solution for contact applications[J].Expert Systems with Applications,2015,42(22):8929-8935

[10] Xu Z H,Zhou X F,Cheng T B,et al.Fuzzy-neural-network based position/force hybrid control for multiple robot manipulators[C]//2017 IEEE International Conference on Cybernetics and Intelligent Systems(CIS)and IEEE Conference on Robotics,Automation and Mechatronics(RAM).November 19-21,2017,Ningbo.IEEE,2017:94-99

[11] Tooranjipour P,Vatankhah R,Arefi M M.Prescribed performance adaptive fuzzy dynamic surface control of nonaffine time-varying delayed systems with unknown control directions and dead-zone input[J].International Journal of Adaptive Control and Signal Processing,2019,33(7):1134-1156

[12] Pham D T,Nguyen T V,Le H X,et al.Adaptive neural network based dynamic surface control for uncertain dual arm robots[J].International Journal of Dynamics and Control,2019,8:824-834

[13] Hu Q L,Xu L,Zhang A H.Adaptive backstepping trajectory tracking control of robot manipulator[J].Journal of the Franklin Institute,2012,349(3):1087-1105

[14] Yen V T,Nan W Y,van Cuong P,et al.Robust adaptive sliding mode control for industrial robot manipulator using fuzzy wavelet neural networks[J].International Journal of Control,Automation and Systems,2017,15(6):2930-2941

[15] Yen V T,Nan W Y,van Cuong P.Recurrent fuzzy wavelet neural networks based on robust adaptive sliding mode control for industrial robot manipulators[J].Neural Computing and Applications,2019,31(11):6945-6958

[16] 于欣波,贺威,薛程谦,等.基于扰动观测器的机器人自适应神经网络跟踪控制研究[J].自动化学报,2019,45(7):1307-1324;YU Xinbo,HE Wei,XUE Chengqian,et al.Disturbance observer-based adaptive neural network tracking control for robots[J].Acta Automatica Sinica,2019,45(7):1307-1324

[17] Song L,Wang H Q,Liu P X.Adaptive fuzzy dynamic surface control of flexible-joint robot systems with input saturation[J].CAA Journal of Automatica Sinica,2019,6(1):97-107

[18] Guo S X,Chen Q R,Xiao N,et al.A fuzzy PID control algorithm for the interventional surgical robot with guide wire feedback force[C]//2016 IEEE International Conference on Mechatronics and Automation.August 7-10,2016,Harbin,Heilongjiang,China.IEEE,2016:426-430

[19] Zhao J,Han L,Wang L,et al.The fuzzy PID control optimized by genetic algorithm for trajectory tracking of robot arm[C]//2016 12th World Congress on Intelligent Control and Automation(WCICA).June 12-15,2016,Guilin,China.IEEE,2016:556-559

[20] Adeli M,Mazinan A H.High efficiency fault-detection and fault-tolerant control approach in Tennessee Eastman process via fuzzy-based neural network representation[J].Complex & Intelligent Systems,2020,6(1):199-212

[21] Lü M L,Baldi S,Liu Z C.The non-smoothness problem in disturbance observer design:a set-invariance-based adaptive fuzzy control method[J].IEEE Transactions on Fuzzy Systems,2019,27(3):598-604

[22] Yuan J,Wang R,Jiang L.Research on neural network PID adaptive control with industrial welding robot in multi-degree of freedom[C]//2016 IEEE Information Technology,Networking,Electronic and Automation Control Conference.May 20-22,2016,Chongqing,China.IEEE,2016:280-284

[23] Wang F,Chao Z Q,Huang L B,et al.Trajectory tracking control of robot manipulator based on RBF neural network and fuzzy sliding mode[J].Cluster Computing,2019,22(sup3):5799-5809

[24] Ruchika,Kumar N.Finite time control scheme for robot manipulators using fast terminal sliding mode control and RBFNN[J].International Journal of Dynamics and Control,2019,7(2):758-766

[25] Jung S.Improvement of tracking control of a sliding mode controller for robot manipulators by a neural network[J].International Journal of Control,Automation and Systems,2018,16(2):937-943

[26] Cuayahuitl H,Lee D,Ryu S,et al.Deep reinforcement learning for chatbots using clustered actions and human-likeness rewards[C]//2019 International Joint Conference on Neural Networks(IJCNN).July 14-19,2019,Budapest,Hungary.IEEE,2019:1-8

[27] Passalis N,Tefas A.Continuous drone control using deep reinforcement learning for frontal view person shooting[J].Neural Computing and Applications,2020,32(9):4227-4238

[28] Murad A,Kraemer F A,Bach K,et al.Autonomous management of energy-harvesting IoT nodes using deep reinforcement learning[C]//2019 IEEE 13th International Conference on Self-Adaptive and Self-Organizing Systems(SASO).June 16-20,2019,Umea,Sweden.IEEE,2019:43-51

[29] Zhang L,Jia J D,Gui G,et al.Deep learning based improved classification system for designing tomato harvesting robot[J].IEEE Access,2018,6:67940-67950

[30] Doan K N,Vaezi M,Shin W,et al.Power allocation in cache-aided NOMA systems:optimization and deep reinforcement learning approaches[J].IEEE Transactions on Communications,2020,68(1):630-644

[31] Trasnea B,Marina L A,Vasilcoi A,et al.GridSim:a vehicle kinematics engine for deep neuroevolutionary control in autonomous driving[C]//2019 Third IEEE International Conference on Robotic Computing(IRC).February 25-27,2019,Naples,Italy.IEEE,2019:443-444

[32] 江其洲,曾碧.基于深度强化学习的移动机器人导航策略研究[J].计算机测量与控制,2019,27(8):217-221;JIANG Qizhou,ZENG Bi.Research on navigation strategy of mobile robot based on deep reinforcement learning [J].Computer Measurement & Control,2019,27(8):217-221

[33] Nguyen N D,Nguyen T,Nahavandi S,et al.Manipulating soft tissues by deep reinforcement learning for autonomous robotic surgery[C]//2019 IEEE International Systems Conference(SysCon).April 8-11,2019,Orlando,FL,USA.IEEE,2019.DOI:10.1109/SYSCON.2019.8836924

[34] van Hasselt H,Guez A,Silver D,et al.Deep reinforcement learning with double Q-learning[J].arXiv,2015,arXiv:1509.06461

[35] Horgan D,Quan J,Budden D,et al.Distributed prioritized experience replay[J].arXiv,2018,arXiv:1803.00933

[36] Wang Z Y,Schaul T,Hessel M,et al.Dueling network architectures for deep reinforcement learning[J].arXiv,2015,arXiv:1511.06581

[37] Sutton R S,McAllester D,Singh S,et al.Policy gradient methods for reinforcement learning with function approximation[C]//Advances in Neural Information Processing Systems,1999:1057-1063

[38] Mnih V,Badia A P,Mirza M,et al.Asynchronous methods for deep reinforcement learning[J].arXiv,2016:arXiv:1602.01783

[39] Wen S H,Chen J H,Wang S,et al.Path planning of humanoid arm based on deep deterministic policy gradient[C]//2018 IEEE International Conference on Robotics and Biomimetics(ROBIO).December 12-15,2018,Kuala Lumpur,Malaysia.IEEE,2018:1755-1760

[40] Luo J L,Solowjow E,Wen C T,et al.Deep reinforcement learning for robotic assembly of mixed deformable and rigid objects[C]//2018 IEEE/RSJ International Conference on Intelligent Robots and Systems(IROS).October 1-5,2018,Madrid.IEEE,2018.DOI:10.1109/IROS.2018.8594353

[41] Wu X P,Zhang D P,Qin F B,et al.Deep reinforcement learning of robotic precision insertion skill accelerated by demonstrations[C]//2019 IEEE 15th International Conference on Automation Science and Engineering(CASE).August 22-26,2019,Vancouver,BC,Canada.IEEE,2019:1651-1656

[42] Yoo J W,Ronzio F,Courtois T.Road noise reduction of a sport utility vehicle via panel shape and damper optimization on the floor using genetic algorithm[J].International Journal of Automotive Technology,2019,20(5):1043-1050

[43] Panchu K P,Rajmohan M,Sumalatha M R,et al.Route planning integrated multi objective task allocation for reconfigurable robot teams using genetic algorithm[J].Journal of Computational and Theoretical Nanoscience,2018,15(2):627-636

[44] Yue L W,Chen H N.Unmanned vehicle path planning using a novel ant colony algorithm[J].EURASIP Journal on Wireless Communications and Networking,2019,2019:136

[45] Zarrouk R,Bennour I E,Jemai A.A two-level particle swarm optimization algorithm for the flexible job shop scheduling problem[J].Swarm Intelligence,2019,13(2):145-168

[46] Xu Z Y,Du L,Wang H P,et al.Particle swarm optimization-based algorithm of a symplectic method for robotic dynamics and control[J].Applied Mathematics and Mechanics,2019,40(1):111-126

[47] Faieghi M R,Delavari H,Baleanu D.A novel adaptive controller for two-degree of freedom polar robot with unknown perturbations[J].Communications in Nonlinear Science and Numerical Simulation,2012,17(2):1021-1030

[48] 吴方圆,姚江云.粒子群神经网络辨识的机器人分数阶滑模控制[J].电子测量技术,2019,42(9):10-13;WU Fangyuan,YAO Jiangyun.Fractional order sliding mode control of industrial robot based on particle swarm optimization neural network [J].Electronic Measurement Technology,2019,42(9):10-13

[49] Aldair A A,Rashid A T,Rashid M T,et al.Adaptive fuzzy control applied to seven-link biped robot using ant colony optimization algorithm[J].Iranian Journal of Science and Technology,Transactions of Electrical Engineering,2019,43(4):797-811

论学渣该如何逆袭
別再亂挑西瓜了!超市員工偷偷用的「挑瓜5密招」第4點保證甜爆一挑就中